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Abstract—EEG signals are obtained from an EEG device after 

recording the user's brain signals. EEG signals can be generated 
by the user after performing motor movements or imagery tasks. 
Motor Imagery (MI) is the task of imagining motor movements 
that resemble the original motor movements. Brain Computer 
Interface (BCI) bridges interactions between users and 
applications in performing tasks. Brain Computer Interface (BCI) 
Competition IV 2a was used in this study. A fully automated 
correction method of EOG artifacts in EEG recordings was 
applied in order to remove artifacts and Common Spatial Pattern 
(CSP) to get features that can distinguish motor imagery tasks. In 
this study, a comparative studies between two deep learning 
methods was explored, namely Deep Belief Network (DBN) and 
Long Short Term Memory (LSTM). Usability of both deep 
learning methods was evaluated using the BCI Competition IV-2a 
dataset. The experimental results of these two deep learning 
methods show average accuracy of 50.35% for DBN and 49.65% 
for LSTM. 
 
Keyword—Electroencephalograph, Motor Imagery, Mu, Beta, 
Brain Computer Interface, Deep Learning, Deep Belief Networks, 
Long Short Term Memory. 

I. INTRODUCTION 
Electroencephalograph (EEG) is a device, instrument, or 

machine used to record, collect and measure brain signals 
originating from the electrical activity of nerves in different 
parts of the brain simultaneously [1], [2]. EEG signals are 
signals obtained from an EEG device after recording the user's 
brain signals. EEG signals can be generated by the user after 
performing motorized or motor imagery tasks. The task of 
motor movements was carried out by the user to produce brain 
signals such as hand movements, leg movements, and blinking 
of the eyes. Motor Imagery (MI) is the task of imagining 
motoric movements resembling the original motor movements. 

Brain Computer Interface (BCI) is a technology that allows 
users to interact with the external environment through direct 
connections between the brain and output devices using brain 
signals [3]. BCI bridges interactions between users and 
applications in performing tasks. In this study, BCI applications 
translate motor imagery tasks performed by users into 
commands that can be understood by machines. The BCI 

application allows users to control one or more external devices 
by imagining the task to be performed. EEG signals that can 
make users control external devices are generally divided into 
several frequency ranges, namely delta, theta, alpha, beta, and 
gamma. Delta has a frequency range of less than 4 Hz, theta has 
a frequency range of 4-8 Hz, alpha has a frequency range of 8-
13 Hz, beta has a frequency range of 13-30 Hz, gamma has a 
range of more than 30 Hz [4]–[6]. There is one more type of 
signal, that is mu signal, mu have a frequency range that is 
almost the same as alpha, which is 8-13 Hz, the difference is 
alpha activity appears in the posterior and occipital parts, 
whereas mu appear from the sensorimotor region [7]. This 
frequency determines which area was related to the motor 
imagery. Motor imagery are in mu frequency range and beta 
[8]. Therefore, in this study bandpass filtering was applied in 
the 8-30 Hz frequency range. In other studies, mu are in the 
frequency range 8-12 Hz and beta is in the range of 18-26 Hz 
[9]–[11]. Differences in this case are natural, then can be used 
as learning in the future to determine the frequency range. The 
value of this frequency range varies when brain activity was 
associated with any motor task even though the movement was 
not needed, it will affect that value. When this unnecessary 
motion affects the value of the EEG signal, this was called noise 
on the EEG signal. Motor movements are different from motor 
imagery, motor movements such as moving the left hand, right 
hand, or leg are converted into commands to control external 
devices, while the motor imagery in the hand by imagining an 
imaginary hand is in front of our eyes and then moved like the 
original hand. This motor imagery recording is then translated 
by the BCI application in order to do the task. In a BCI system, 
a good classifier is important to get high accuracy.  

Deep learning methods are still rarely explored in EEG-
based BCI systems, because they are quite difficult to apply to 
the development of a perfect EEG classification framework due 
to various impact factors, such as noise, correlation between 
channels, and high-dimensional EEG data [12]. Deep Belief 
Network (DBN) is one part of Deep learning. Some works have 
introduced DBN into the EEG signal classification [13]–[15]. 
The application of DBN for EEG signal classification from 
motor imagery is still rare. Meanwhile, other deep learning 
classifiers, Long Short Term Memory (LSTM), are still 
relatively small for EEG signals classification. Several studies 
use LSTM for EEG signals classification [16], [17]. The 
application of LSTM to the classification of EEG signals from 
motor imagery is also still rare. Based on this, the aim is to 
explore the DBN and LSTM methods for EEG signal 
classification from motor imagery. These two methods were 
compared to get the best method among these two deep learning 
methods.  
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II. PRE-PROCESSING

A. Data Description and Analysis 
Brain Computer Interface (BCI) Competition IV 2a was used 

in this study. This data includes EEG signals from nine 
subjects, namely A01 - A09, and each subject provides two 
recording sessions. The data consists of 25 channels, which 
include 22 EEG channels and three monopolar EOG channels. 
EOG channels are provided for further applications of artifact 
processing methods. These signals include four different MI 
tasks, namely the left hand (class 1), right hand (class 2), both 
feet (class 3) and tongue (class 4). Two sessions on different 
days were recorded for each subject. Each session was 
comprised of six runs separated by short breaks. One run 
consists of 48 trials (twelve for each of the four possible 
classes), yielding a total of 288 trials per session. 

In this study, two classes were used, namely the right hand 
motor imagery, and the left hand motor imagery. Thus, 24 trials 
in two classes, and the total trials for six runs are 144 trials. It 
means 72 trials within rejected trial in each class. The EEG 
dataset consists of two types of training data and test data, 
which the EEG training dataset was used to produce a classifier 
model, and then an EEG test dataset was used to get the 
classification accuracy. Classification accuracy was achieved 
by matching it with the label which is the output of the 
classifier. After finishing analyzing the data, the pre-processing 
stage was applied and feature extraction stage before 
classification. Fig. 1 shows the stages in flow diagram of 
method used in this study. 

B. A Fully Automated Correction Method of EOG Artifacts in 
EEG Recordings 

A fully automated correction method of EOG artifacts in 
EEG recordings was developed by [18]. In this study, a fully 
automated correction method of EOG artifacts in EEG 
recordings was applied [19]. 

The following linear models was assumed with three spatial 
(horizontal, vertical, and radial) EOG components, including 
23 channel numbers (left EOG), 24 channel numbers (middle 
EOG), 25 channel numbers (right EOG). See the following 
models, presented as (1). 

𝑎𝑎(𝑡𝑡)  =  𝑗𝑗(𝑡𝑡)  + {𝑜𝑜1(𝑡𝑡), 𝑜𝑜2(𝑡𝑡), 𝑜𝑜3(𝑡𝑡)} 𝑏𝑏 (1) 

where 𝑎𝑎(𝑡𝑡) is the recorded value of channel ch at time 𝑡𝑡, j is the 
source signal without artifact contamination, 𝑜𝑜1, 𝑜𝑜2, dan 𝑜𝑜3 
indicate the noise source 𝑂𝑂 of the three spatial EOG 
components. And 𝑏𝑏 indicate the weight of EOG artifacts at the 
EEG channel. Extending this to more EEG channels and using 
matrix notation, can be written in (2). 

𝐴𝐴𝑇𝑇 × 𝑀𝑀  =  𝐽𝐽𝑇𝑇 × 𝑀𝑀  +  𝑂𝑂𝑇𝑇 × 𝑁𝑁 𝐵𝐵𝑁𝑁 × 𝑀𝑀. (2) 

The indices indicate the size of each matrix. Signal 𝐴𝐴 and 𝐽𝐽 
have 𝑇𝑇 time points dan 𝑀𝑀 channels. The noise 𝑂𝑂 have 𝑛𝑛 
components. 𝐵𝐵 indicate the weights from each EOG component 
to each EEG channel. To obtain the corrected signal, the 
following formulas are used. 

𝐽𝐽 =  𝐴𝐴 −  𝑂𝑂 𝐵𝐵. (3) 

Fig. 1 Flow diagram of method used in this study. 

Since the signal 𝐽𝐽 and the noise 𝑂𝑂 are independent, then: 

𝑂𝑂𝑇𝑇  𝐽𝐽 =  𝑂𝑂𝑇𝑇  𝐴𝐴 −  𝑂𝑂𝑇𝑇  𝑂𝑂 𝐵𝐵. (4) 

With 𝑂𝑂𝑇𝑇  𝐽𝐽 =  0, then (5) is obtained. 

𝐵𝐵 =  𝑂𝑂𝑇𝑇 𝑂𝑂−1 𝑂𝑂𝑇𝑇 𝐴𝐴 =  𝐷𝐷𝑁𝑁𝑁𝑁−1  𝐷𝐷𝑁𝑁𝑁𝑁 (5) 

where 𝐷𝐷𝑁𝑁𝑁𝑁  =  𝑂𝑂𝑇𝑇  𝑂𝑂 is the auto-covariance from EOG channel 
and 𝐷𝐷𝑁𝑁𝑁𝑁  =  𝑂𝑂𝑇𝑇  𝐴𝐴 is the cross-covariance between EEG and 
EOG channel. 

C. Spectral Perturbation Analysis and Band Pass Filter 
Spectral perturbation analysis was used to know which range 

that motor imagery was produced. Band pass filter is useful to 
eliminate noise from signals that pass a certain range, so that 
the signal does not interfere with the signal processing. In this 
study butterworth band pass filters was applied in frequency 
range of mu 8-13 Hz and beta 13-30 Hz. This frequency range 
was applied because both motor imagery tasks are in mu and 
beta. Fig. 2 and Fig. 3 show the dominant range on channel C3 
and C4 at the duration of both motor imagery tasks. 

III. FEATURE EXTRACTION

In this study, the Common Spatial Pattern (CSP) was used 
[20]. Features extracted from two original EEG sample classes 
using CSP. CSP serves to determine spatial filters that 
maximize the variance of signals in one class and 
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simultaneously minimize the variance of signals in other 
classes. Assume the original EEG signal was represented as a 
matrix 𝐽𝐽 ∈ 𝑅𝑅𝑀𝑀×𝑇𝑇, where M is the number of channels, T is the 
sample point of each channel. The CSP operation process is 
shown as follows. 

Spatial covariance from EEG signal data is calculated using 
(6). 

𝐶𝐶 =  𝐽𝐽𝐽𝐽𝑇𝑇

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐽𝐽𝐽𝐽𝑇𝑇)
. (6) 

To separate the two different classes of motor imagery, 
spatial covariances was made from the two data classes 
respectively. After getting the average covariance �̅�𝐶1dan �̅�𝐶2, a 
composite spatial covariance was obtained. 

�̅�𝐶  =  �̅�𝐶1  +  �̅�𝐶2. (7) 

�̅�𝐶 decomposed into (8). 

�̅�𝐶  =  𝑉𝑉𝑡𝑡 ∑ 𝑉𝑉𝑡𝑡𝑇𝑇 (8) 

In this case, 𝑉𝑉𝑡𝑡 is a feature vector that was decomposed. ∑ is 
a diagonal matrix consisting of eigenvalues. The eigenvalues 

are arranged in descending order, then transform them with 
whitening. 

𝑄𝑄 =  �∑−1 𝑉𝑉𝑡𝑡𝑇𝑇. (9) 

Covariance matrices can then be changed to the following 
equation. 

𝑄𝑄 𝐶𝐶𝚤𝚤�  𝑄𝑄𝑇𝑇  =  𝑆𝑆𝑖𝑖  =  𝑉𝑉 ∑𝑖𝑖 𝑉𝑉𝑇𝑇
∑1  +  ∑2  =  𝐼𝐼 �. (10) 

To get the projection matrix the equation is done: 

𝑊𝑊 =  (𝑉𝑉𝑇𝑇  𝑄𝑄)𝑇𝑇. (11) 

After that, single trial EEG data can be changed to the 
following equation. 

𝑍𝑍 =  𝑊𝑊 𝐽𝐽 (12) 

EEG signals can be projected on the first 𝑛𝑛 and the last 𝑛𝑛 
from 𝑊𝑊 after whitening process. This means, the first 𝑛𝑛 column 
calculated as the first half 𝑀𝑀 and the rest of column as the next 
halfh 𝑀𝑀, where 𝑀𝑀 is the number of channels dan 𝑛𝑛 is half of 
total channels. The first 𝑛𝑛 column and the last 𝑛𝑛 column from 
𝑊𝑊 can be calculated in row vectors 𝑍𝑍𝑝𝑝 = (𝑝𝑝 = 1,2, … ,𝑛𝑛,𝑀𝑀 −
𝑛𝑛 + 1, … ,𝑀𝑀), from 𝑍𝑍 which maximizes the difference in 
variance between the groups associated with the largest eigen 
values in ∑1 dan ∑2. The signals are contained in the first and 
rows 𝑍𝑍 in equation (12), due to 𝑊𝑊. The features are obtained by 
the following equation. 

𝑓𝑓𝑝𝑝  =  𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑣𝑣𝑣𝑣𝑣𝑣 (𝑍𝑍𝑝𝑝)
∑ 𝑓𝑓𝑣𝑣𝑣𝑣𝑣𝑣 (𝑍𝑍𝑖𝑖)2𝑚𝑚
𝑖𝑖=1

 (13) 

The 𝑓𝑓𝑣𝑣𝑡𝑡𝑡𝑡  (𝑍𝑍𝑝𝑝) symbol shows the variance of total data and 
𝑓𝑓𝑣𝑣𝑡𝑡𝑡𝑡  (𝑍𝑍𝑝𝑝) show 𝑖𝑖 variance of data. 

IV. CLASSIFICATION 

A. Deep Learning 
Deep learning is part of machine learning, because the initial 

purpose of machine learning, making computers, and artificial 
intelligence is to make a computer system that works like a 
human brain. Humans are competing to realize this. Deep 
learning is a neural network that has at least two hidden layers 
[21]. From the development of a neural network that has many 
hidden layers, the Deep Belief Network (DBN) and Long Short 
Term Memory (LSTM) are developed. 

B. Deep Belief Network (DBN) 
Deep Belief Network (DBN) developed by Geoffrey E. 

Hinton, Simon Osindero, dan Yee-Whye Teh in 2006 [22]. In 
this study, DBN was used [23]. For algorithms, DeeBNet 
toolbox was used [24]. In DBN, 𝑣𝑣 representing feature vector 
that only contain one channel feature. The RBM defines the 
joint distribution there, assuming as a unit seen in DBN and ℎ, 
hidden units can be calculated in (14). 

𝑝𝑝(𝑣𝑣)  =  ∑𝑡𝑡−𝐸𝐸(𝑣𝑣,   ℎ)

∑ ∑ 𝑡𝑡−𝐸𝐸(𝑢𝑢,   ℎ)𝑔𝑔𝑢𝑢
. (14) 

 
Fig. 2 ERSP of left region (C3). 

 
Fig. 3 ERSP of right region (C4). 
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E is an energy function defined as (15). 

𝐸𝐸(𝑣𝑣,ℎ)  =  � 𝑎𝑎𝑗𝑗 𝑣𝑣𝑗𝑗
𝑗𝑗 ∈ 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑙𝑙𝑡𝑡

 −  � 𝑏𝑏𝑗𝑗 ℎ𝑗𝑗
𝑗𝑗 ∈ 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑙𝑙𝑡𝑡

 

−  �𝑣𝑣𝑗𝑗 ℎ𝑗𝑗  𝜔𝜔𝑖𝑖𝑗𝑗
𝑖𝑖,   𝑗𝑗

 
(15) 

where 𝑣𝑣𝑗𝑗 ℎ𝑗𝑗  is binary status if visible unit 𝑖𝑖 and hidden unit 𝑗𝑗, 
𝑎𝑎𝑖𝑖, 𝑏𝑏𝑗𝑗 is their bias and 𝜔𝜔𝑖𝑖𝑗𝑗 is the weight between them. Network 
provides a probability for each possible pair of vectors that are 
visible and hidden through this energy function. 

𝑝𝑝(𝑣𝑣,ℎ)  =  1
𝑍𝑍

 𝑒𝑒−𝐸𝐸(𝑣𝑣,   ℎ) (16) 

The probability given by the network to training data can be 
optimized by adjusting the weights and biases to reduce that 
energy. The derivative of the log vector training probability 
with respect to weight was calculated as follows. 

𝜕𝜕 𝑙𝑙𝑜𝑜𝑙𝑙 𝑝𝑝(𝑣𝑣)
𝜕𝜕𝜔𝜔𝑖𝑖𝑗𝑗

 =  
∑ 𝜕𝜕 𝑙𝑙𝑜𝑜𝑙𝑙 𝑝𝑝(𝑣𝑣)𝑣𝑣 𝜖𝜖 𝐷𝐷

𝜕𝜕𝜔𝜔𝑖𝑖𝑗𝑗
 

=  𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡  �
𝜕𝜕 𝐸𝐸(𝑣𝑣,ℎ)
𝜕𝜕𝜔𝜔𝑖𝑖𝑗𝑗

�  

−  𝐸𝐸𝑚𝑚𝑙𝑙𝑑𝑑𝑡𝑡𝑙𝑙  �
𝜕𝜕 𝐸𝐸(𝑢𝑢,𝑙𝑙)
𝜕𝜕𝜔𝜔𝑖𝑖𝑗𝑗

� 

(17) 

where the first item is expectation of 𝜕𝜕 𝐸𝐸(𝑣𝑣,ℎ) / 𝜕𝜕𝜔𝜔𝑖𝑖𝑗𝑗 responds 
to training set 𝐷𝐷 and hidden variables sampled according to the 
conditional distribution of the dataset on 𝑝𝑝(ℎ | 𝑣𝑣), given 
training samples randomly selected, 𝑣𝑣, the binary state, ℎ𝑗𝑗, from 
each hidden unit, 𝑗𝑗, set to 1 with probability as in (18). 

𝑝𝑝(ℎ𝑗𝑗  =  1 |𝑣𝑣)  =  𝜎𝜎(𝑏𝑏𝑗𝑗  +  ∑𝑣𝑣𝑗𝑗  𝜔𝜔𝑖𝑖𝑗𝑗) (18) 

where 𝜎𝜎(𝑥𝑥) is the sigmoid logistic function 1/(1 + 𝑒𝑒𝑥𝑥𝑝𝑝(−𝑥𝑥)). 
𝑣𝑣𝑖𝑖ℎ𝑗𝑗 then an unbiased sample.  

The way to get an unbiased sample from a unit that looks 
similar to a hidden unit is that with no direct connection 
between units seen in RBM, hidden vectors are defined as (19). 

𝑝𝑝(𝑣𝑣𝑖𝑖  =  1 | ℎ)  =  𝜎𝜎(𝛼𝛼𝑖𝑖  +  ∑ ℎ𝑗𝑗  𝜔𝜔𝑖𝑖𝑗𝑗𝑗𝑗  ) (19) 

The vectors are combined with binary vectors from the class 
label for training the RBM classifier, shared data distribution 
and class labels. The energy function becomes (20). 

𝐸𝐸(𝑣𝑣, 𝑙𝑙,ℎ)  =  −  �𝛼𝛼𝑖𝑖 𝑣𝑣𝑖𝑖
𝑖𝑖

 −  �𝑏𝑏𝑗𝑗 ℎ𝑗𝑗
𝑗𝑗

 

−  �𝜔𝜔𝑖𝑖𝑗𝑗
𝑖𝑖,   𝑗𝑗

 �𝑐𝑐𝑦𝑦𝑙𝑙𝑦𝑦
𝑦𝑦

 �𝜔𝜔𝑦𝑦𝑗𝑗  ℎ𝑗𝑗  𝑙𝑙𝑦𝑦.
𝑦𝑦,𝑗𝑗  

 
(20) 

In this equation, 1 is the binary class label and 𝜔𝜔𝑖𝑖𝑗𝑗 is the 
weights between hidden units and label units. 

C. Long Short Term Memory (LSTM) 
Long Short Term Memory (LSTM) is part of Recurrent 

Neural Network (RNN). LSTM was developed by Holreiter 
and Schmidhuber in 1997 [25]. In this study, LSTM was used 

[26]. LSTM has three gates that have the ability to delete or add 
information to a state. The first gate is the forget gate to decide 
what information to discard from the cell state, this decision is 
made by the sigmoid layer. 

𝑓𝑓𝑡𝑡  =  𝜎𝜎(𝑊𝑊𝑓𝑓  ∙  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑓𝑓) (21) 

The second gate is an input gate consisting of the sigmoid 
layer to decide which value to update, and the layer that creates 
a new vector of updated values as described in (22) and (23). 

𝑖𝑖𝑡𝑡  =  𝜎𝜎(𝑊𝑊𝑖𝑖  ∙  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑖𝑖) (22) 

𝐶𝐶𝑡𝑡�  =  𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝑊𝑊𝑡𝑡  ∙  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑡𝑡) (23) 

Then, the cell state was updated from equations (21), (22), 
and (23) by (24). 

𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡  ∗  𝐶𝐶𝑡𝑡−1  +  𝑖𝑖𝑡𝑡  ∗  �̃�𝐶𝑡𝑡 (24) 

Finally, the output of the current state will be calculated 
based on the state of the updated cell and the sigmoid layer 
which determines which part of the cell state will be the final 
result as described in equations (25) and (26). 

𝑜𝑜𝑡𝑡  =  𝜎𝜎(𝑊𝑊𝑙𝑙  ∙  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑙𝑙) (25) 

ℎ𝑡𝑡  =  𝑜𝑜𝑡𝑡  ∗  𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝐶𝐶𝑡𝑡) (26) 

In these equations, 𝜎𝜎 is the sigmoid activation function that 
presses the number into the range (0,1), tanh is the activation 
function of hyperbolic tangent which suppresses the number 
into the range (-1,1), 𝑊𝑊𝑓𝑓, 𝑊𝑊𝑖𝑖, 𝑊𝑊𝑡𝑡, 𝑊𝑊𝑙𝑙 is the weight matrix, 𝑥𝑥𝑡𝑡 is 
the input vector , ℎ𝑡𝑡−1 shows the past hidden state and 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 
𝑏𝑏𝑡𝑡, 𝑏𝑏𝑙𝑙 are bias vectors. 

D. Experimental Results 
In this experiment, a laptop with the Windows 10 operating 

system with an Intel Core i7-4510U (2.6 GHz) CPU with 4 GB 
of RAM was used, the experiment was conducted in Matlab 
2019a. The experimental result are shown in Table I. 

Comparison between DBN and LSTM in the same dataset 
and modelset. Data was randomized using 5-Cross Validation 
for nine subjects to obtain optimal accuracy results. According 
to [27], the DBN algorithm is set with the following ranges of 

TABLE I 
EXPERIMENTAL RESULTS 

Subject 
Classification Accuracy (%) 

DBN LSTM 
A01 48.15 48.15 
A02 51.85 51.85 
A03 48.15 51.85 
A04 50 50 
A05 50 50 
A06 52.38 47.62 
A07 50 50 
A08 50 50 
A09 52.63 47.37 

Average 50.35 49.65 
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parameters: hidden nodes = 5-100, learning rate = 0.1-0.9, 
weight decay = 0.1-0.9, momentum = 0.001-0.01. For DBN, 
number of epochs = 10 and mini batch size = 20 were set. The 
LSTM algorithm was applied with the number of epochs = 10 
according to [28], while the number of inputs and other 
parameters adjusted to data, with the following parameters: 
input size = 22, number of hidden units = 100, mini batch size 
= 27. 

V. CONCLUSIONS 
This paper has evaluated two different deep learning 

methods as classifiers using dataset of motor imagery from BCI 
Competition IVa. Deep belief Network (DBN) and Long Short 
Term Memory (LSTM) are tested to find the most efficient 
classifier in terms of accuracy results. DBN has shown itself to 
be the most efficient classifier with the slight average accuracy 
difference 50.35% compared to LSTM which achieves 49.65% 
accuracy. 

LSTM get the lower accuracy value than DBN in average. 
Accuracy values that have been presented are intended for 
comparison of classification methods. However, the level of 
accuracy is not high enough. In future work, to overcome this 
problem, different data filtering methods and feature extraction 
methods must be considered to obtain higher accuracy. Larger 
subject populations should be considered as a consideration for 
the method performance hypothesis better than. 

From the results of this experiment, DBN gets a higher 
accuracy value than LSTM, the results of this hypothesis can 
be used in future work as a choice of methods for EEG signal 
classification using the deep learning method. 
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